Biomarqueurs

icon img

Domaine 13 : Biomarqueurs – Neuroimagerie

Recommandations
 13.1

À ce stade, les biomarqueurs avancés de neuro-imagerie ne sont pas encore prêts pour une mise en œuvre/gestion clinique.

Niveau de preuve :

Les biomarqueurs tels que l’IRM fonctionnelle (IRMf), l’imagerie du tenseur de diffusion (ITD), la spectroscopie par résonance magnétique (SRM), le marquage du spin artériel (ASL), la cartographie de la réactivité cérébrovasculaire (CVR), l’imagerie quantitative pondérée en fonction de la susceptibilité (qSWI), l’électroencéphalographie/le potentiel lié aux événements (EEG/ERP), la stimulation magnétique transcrânienne (SMT), bien que potentiellement utiles en tant qu’outils de recherche, ne sont pas prêts à être mis en œuvre dans le cadre clinique.

 

13.2

Lorsque l’IRM conventionnelle est réalisée dans le cadre de la prise en charge clinique des patients souffrant de commotions cérébrales, l’inclusion de séquences d’images pondérées en fonction de la susceptibilité (SWI) pourrait être envisagée, car elle peut être utile pour détecter de petites hémorragies. La signification clinique des petites hémorragies sur les images pondérées en fonction de la susceptibilité n’est pas claire à l’heure actuelle.

Niveau de preuve :

Voir la recommandation 2.1c pour plus d’informations sur le moment où il faut envisager une imagerie diagnostique du cerveau ou de la colonne cervicale.

 

 

 

 

________________________________________________________________________________

NIVEAU DE PREUVE

 = Données cohérentes, de bonne qualité et orientées vers le patient (exemple : au moins un grand essai contrôlé randomisé, une méta-analyse ou une revue systématique avec homogénéité, ou une grande étude de cohorte multicentrique de bonne qualité).

  = Preuves incohérentes ou de qualité limitée orientées vers le patient (exemple : études de cohortes plus petites, études de cas ou essais de contrôle avec des limitations

 = Consensus, pratique habituelle, opinion ou preuves de niveau faible

 
Références

Documents de recherche qui soutiennent les recommandations de la présente ligne directrice :

Babcock, L., Yuan, W., Leach, J., Nash, T., & Wade, S. (2015). White matter alterations in youth with acute mild traumatic brain injury. Journal of Pediatric Rehabilitation Medicine, 8(4), 285–296. https://doi.org/10.3233/PRM-150347

Beauchamp, M. H., Beare, R., Ditchfield, M., Coleman, L., Babl, F. E., Kean, M., … Anderson, V. (2013). Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury. Cortex, 49(2), 591–598. https://doi.org/10.1016/j.cortex.2012.08.015

Bonow, R. H., Friedman, S. D., Perez, F. A., Ellenbogen, R. G., Browd, S. R., Mac Donald, C. L., … Rivara, F. P. (2017). Prevalence of Abnormal Magnetic Resonance Imaging Findings in Children with Persistent Symptoms after Pediatric Sports-Related Concussion. Journal of Neurotrauma, 34(19), 2706–2712. https://doi.org/10.1089/neu.2017.4970

Chamard, E., & Lichtenstein, J. D. (2018). A systematic review of neuroimaging findings in children and adolescents with sports-related concussion. Brain Injury, 32(7), 816–831. https://doi.org/10.1080/02699052.2018.1463106

Dona, O., Noseworthy, M. D., DeMatteo, C., & Connolly, J. F. (2017). Fractal analysis of brain blood oxygenation level dependent (BOLD) signals from children with mild traumatic brain injury (mTBI). PLoS ONE, 12(1). https://doi.org/10.1371/journal.pone.0169647

Ellis, M. J., Leiter, J., Hall, T., McDonald, P. J., Sawyer, S., Silver, N., … Essig, M. (2015). Neuroimaging findings in pediatric sports-related concussion. Journal of Neurosurgery: Pediatrics, 16(3), 241–247. https://doi.org/10.3171/2015.1.PEDS14510

Fakhran, S., Yaeger, K., Collins, M., & Alhilali, L. (2014). Sex Differences in White Matter Abnormalities after Mild Traumatic Brain Injury: Localization and Correlation with Outcome. Radiology, 272(3), 815–823. https://doi.org/10.1148/radiol.14132512

Faris, G., Byczkowski, T., Ho, M., & Babcock, L. (2016). Prediction of Persistent Postconcussion Symptoms in Youth Using a Neuroimaging Decision Rule. Academic Pediatrics, 16(4), 336–342. https://doi.org/10.1016/j.acap.2015.10.007

Genc, S., Anderson, V., Ryan, N. P., Malpas, C. B., Catroppa, C., Beauchamp, M. H., & Silk, T. J. (2017). Recovery of White Matter following Pediatric Traumatic Brain Injury Depends on Injury Severity. Journal of Neurotrauma, 34(4), 798–806. https://doi.org/10.1089/neu.2016.4584

Iyer, K. K., Barlow, K. M., Brooks, B., Ofoghi, Z., Zalesky, A., & Cocchi, L. (2019). Relating brain connectivity with persistent symptoms in pediatric concussion. Annals of Clinical and Translational Neurology, 6(5), 954–961. https://doi.org/10.1002/acn3.764

Keightley, M. L., Singh Saluja, R., Chen, J.-K., Gagnon, I., Leonard, G., Petrides, M., & Ptito, A. (2014). A Functional Magnetic Resonance Imaging Study of Working Memory in Youth after Sports-Related Concussion: Is It Still Working? Journal of Neurotrauma, 31(5), 437–451. https://doi.org/10.1089/neu.2013.3052

King, R., Grohs, M. N., Kirton, A., Lebel, C., Esser, M. J., & Barlow, K. M. (2019). Microstructural neuroimaging of white matter tracts in persistent post-concussion syndrome: A prospective controlled cohort study. NeuroImage: Clinical, 23(April), 101842. https://doi.org/10.1016/j.nicl.2019.101842

King, R., Kirton, A., Zewdie, E., Seeger, T. A., Ciechanski, P., & Barlow, K. M. (2019). Longitudinal assessment of cortical excitability in children and adolescents with mild traumatic brain injury and persistent post-concussive symptoms. Frontiers in Neurology, 10(MAY), 8–18. https://doi.org/10.3389/fneur.2019.00451

Lancaster, M. A., Olson, D. V., McCrea, M. A., Nelson, L. D., LaRoche, A. A., & Muftuler, L. T. (2016). Acute white matter changes following sport-related concussion: A serial diffusion tensor and diffusion kurtosis tensor imaging study. Human Brain Mapping, 37(11), 3821–3834. https://doi.org/10.1002/hbm.23278

Mac Donald, C. L., Barber, J., Wright, J., Coppel, D., De Lacy, N., Ottinger, S., … Temkin, N. (2019). Longitudinal Clinical and Neuroimaging Evaluation of Symptomatic Concussion in 10-to 14-year-old Youth Athletes. Journal of Neurotrauma, 36(2), 264–274. https://doi.org/10.1089/neu.2018.5629

Manning, K. Y., Schranz, A., Bartha, R., Dekaban, G. A., Barreira, C., Brown, A., … Menon, R. S. (2017). Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology, 89(21), 2157–2166. https://doi.org/10.1212/WNL.0000000000004669

Mayer, A. R., Hanlon, F. M., & Ling, J. M. (2015). Gray Matter Abnormalities in Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma, 32(10), 723–730. https://doi.org/10.1089/neu.2014.3534

Morgan, C. D., Zuckerman, S. L., King, L. E., Beaird, S. E., Sills, A. K., & Solomon, G. S. (2015). Post-concussion syndrome (PCS) in a youth population: defining the diagnostic value and cost-utility of brain imaging. Child’s Nervous System, 31(12), 2305–2309. https://doi.org/10.1007/s00381-015-2916-y

Murdaugh, D. L., King, T. Z., Sun, B., Jones, R. A., Ono, K. E., Reisner, A., & Burns, T. G. (2018). Longitudinal Changes in Resting State Connectivity and White Matter Integrity in Adolescents with Sports-Related Concussion. Journal of the International Neuropsychological Society, 24(8), 781–792. https://doi.org/10.1017/S1355617718000413

Mutch, W. A. C., Ellis, M. J., Ryner, L. N., McDonald, P. J., Morissette, M. P., Pries, P., … Fisher, J. A. (2018). Patient-specific alterations in CO2 cerebrovascular responsiveness in acute and sub-acute sports-related concussion. Frontiers in Neurology, 9(JAN), 1–11. https://doi.org/10.3389/fneur.2018.00023

Mutch, W. A. C., Ellis, M. J., Ryner, L. N., Morissette, M. P., Pries, P. J., Dufault, B., … Fisher, J. A. (2016). Longitudinal Brain Magnetic Resonance Imaging CO2 Stress Testing in Individual Adolescent Sports-Related Concussion Patients: A Pilot Study. Frontiers in Neurology, 7(July), 1–8. https://doi.org/10.3389/fneur.2016.00107

Mutch, W. Alan C. Ellis, Michael J. Ryner, Lawrence N. Graham, Ruth. Dufault, Brenden. Gregson, Brian. Hall, Thomas. Bunge, Martin. Essig, M. (2015). Brain magnetic resonance imaging CO2 stress testing in adolescent post-concussion syndrome: pCASL findings. Journal of Neurosurgery, 125(September), 1–13. https://doi.org/10.3171/2015.6.JNS15972.

Newsome, M. R., Li, X., Lin, X., Wilde, E. A., Ott, S., Biekman, B., … Levin, H. S. (2016). Functional connectivity is altered in concussed adolescent athletes despite medical clearance to return to play: A preliminary report. Frontiers in Neurology, 7(JUL), 1–9. https://doi.org/10.3389/fneur.2016.00116

Orr, C. A., Albaugh, M. D., Watts, R., Garavan, H., Andrews, T., Nickerson, J. P., … Hudziak, J. J. (2016). Neuroimaging Biomarkers of a History of Concussion Observed in Asymptomatic Young Athletes. Journal of Neurotrauma, 33(9), 803–810. https://doi.org/10.1089/neu.2014.3721

Rose, S. C., Schaffer, C. E., Young, J. A., McNally, K. A., Fischer, A. N., & Heyer, G. L. (2017). Utilization of conventional neuroimaging following youth concussion. Brain Injury, 31(2), 260–266. https://doi.org/10.1080/02699052.2016.1235285

Saluja, R. S., Chen, J.-K., Gagnon, I. J., Keightley, M., & Ptito, A. (2015). Navigational Memory Functional Magnetic Resonance Imaging: A Test for Concussion in Children. Journal of Neurotrauma, 32(10), 712–722. https://doi.org/10.1089/neu.2014.3470

Schmidt, J., Hayward, K. S., Brown, K. E., Zwicker, J. G., Ponsford, J., Van Donkelaar, P., … Boyd, L. A. (2018). Imaging in pediatric concussion: A systematic review. Pediatrics, 141(5). https://doi.org/10.1542/peds.2017-3406

Sinopoli, K. J., Chen, J.-K., Wells, G., Fait, P., Ptito, A., Taha, T., & Keightley, M. (2014). Imaging “Brain Strain” in Youth Athletes with Mild Traumatic Brain Injury during Dual-Task Performance. Journal of Neurotrauma, 31(22), 1843–1859. https://doi.org/10.1089/neu.2014.3326

Stephens, J. A., Liu, P., Lu, H., & Suskauer, S. J. (2018). Cerebral Blood Flow after Mild Traumatic Brain Injury: Associations between Symptoms and Post-Injury Perfusion. Journal of Neurotrauma, 35(2), 241–248. https://doi.org/10.1089/neu.2017.5237

Urban, K. J., Barlow, K. M., Jimenez, J. J., Goodyear, B. G., & Dunn, J. F. (2015). Functional Near-Infrared Spectroscopy Reveals Reduced Interhemispheric Cortical Communication after Pediatric Concussion. Journal of Neurotrauma, 32(11), 833–840. https://doi.org/10.1089/neu.2014.3577

Urban, K. J., Riggs, L., Wells, G. D., Keightley, M., Chen, J.-K., Ptito, A., … Sinopoli, K. J. (2017). Cortical Thickness Changes and Their Relationship to Dual-Task Performance following Mild Traumatic Brain Injury in Youth. Journal of Neurotrauma, 34(4), 816–823. https://doi.org/10.1089/neu.2016.4502

Van Beek, L., Ghesquière, P., Lagae, L., & De Smedt, B. (2015). Mathematical Difficulties and White Matter Abnormalities in Subacute Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma, 32(20), 1567–1578. https://doi.org/10.1089/neu.2014.3809

Van Beek, L., Vanderauwera, J., Ghesquière, P., Lagae, L., & De Smedt, B. (2015). Longitudinal changes in mathematical abilities and white matter following paediatric mild traumatic brain injury. Brain Injury, 29(13–14), 1701–1710. https://doi.org/10.3109/02699052.2015.1075172

Wang, Y., Nelson, L. D., LaRoche, A. A., Pfaller, A. Y., Nencka, A. S., Koch, K. M., & McCrea, M. A. (2016). Cerebral Blood Flow Alterations in Acute Sport-Related Concussion. Journal of Neurotrauma, 33(13), 1227–1236. https://doi.org/10.1089/neu.2015.4072

Wang, Y., West, J. D., Bailey, J. N., Westfall, D. R., Xiao, H., Arnold, T. W., … McDonald, B. C. (2015). Decreased cerebral blood flow in chronic pediatric mild TBI: An MRI perfusion study. Developmental Neuropsychology, 40(1), 40–44. https://doi.org/10.1080/87565641.2014.979927

Westfall, D. R., West, J. D., Bailey, J. N., Arnold, T. W., Kersey, P. A., Saykin, A. J., & McDonald, B. C. (2015). Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI). Journal of Pediatric Rehabilitation Medicine, 8(4), 297–308. https://doi.org/10.3233/PRM-150348

Wu, T., Merkley, T. L., Wilde, E. A., Barnes, A., Li, X., Chu, Z. D., … Levin, H. S. (2017). A preliminary report of cerebral white matter microstructural changes associated with adolescent sports concussion acutely and subacutely using diffusion tensor imaging. Brain Imaging and Behavior, 1–12. https://doi.org/10.1007/s11682-017-9752-5

 

Dernière mise à jour : 16 novembre 2019

 

icon img

  Domaine 14 : Biomarqueurs – Sérologiques

Recommandations

14.1

L’utilisation de biomarqueurs sérologiques n’est pas cliniquement indiquée. Il n’existe actuellement aucun test sanguin validé permettant de détecter avec précision les commotions cérébrales chez les enfants/adolescents.

Niveau de preuve :

À ce stade, les nouveaux biomarqueurs sérologiques et autres biomarqueurs cliniques, bien que potentiellement utiles en tant qu’outils de recherche, ne sont pas prêts pour une mise en œuvre/gestion clinique.

________________________________________________________________________________

NIVEAU DE PREUVE

 = Données cohérentes, de bonne qualité et orientées vers le patient (exemple : au moins un grand essai contrôlé randomisé, une méta-analyse ou une revue systématique avec homogénéité, ou une grande étude de cohorte multicentrique de bonne qualité).

  = Preuves incohérentes ou de qualité limitée orientées vers le patient (exemple : études de cohortes plus petites, études de cas ou essais de contrôle avec des limitations

 = Consensus, pratique habituelle, opinion ou preuves de niveau faible

Références

Documents de recherche qui soutiennent les recommandations de la présente ligne directrice : 

Babcock, L., Byczkowski, T., Wade, S. L., Ho, M., & Bazarian, J. J. (2013). Inability of S100B to predict postconcussion syndrome in children who present to the emergency department with mild traumatic brain injury: A brief report. Pediatric Emergency Care, 29(4), 458–461. https://doi.org/10.1097/PEC.0b013e31828a202d

Bazarian, J. J., Blyth, B. J., He, H., Mookerjee, S., Jones, C., Kiechle, K., … Khan, J. (2013). Classification Accuracy of Serum Apo A-I and S100B for the Diagnosis of Mild Traumatic Brain Injury and Prediction of Abnormal Initial Head Computed Tomography Scan. Journal of Neurotrauma, 30(20), 1747–1754. https://doi.org/10.1089/neu.2013.2853

Białuńska, A., & Salvatore, A. P. (2017). The auditory comprehension changes over time after sport-related concussion can indicate multisensory processing dysfunctions. Brain and Behavior, 7(12), 1–8. https://doi.org/10.1002/brb3.874

Broglio, S. P., Williams, R., Lapointe, A., Rettmann, A., Moore, B., Meehan, S. K., & Eckner, J. T. (2017). Brain network activation technology does not assist with concussion diagnosis and return to play in football athletes. Frontiers in Neurology, 8(JUN). https://doi.org/10.3389/fneur.2017.00252

Delefortrie, Q., Lejeune, F., Kerzmann, B., Levy, R., Adam, J. F., Sottiaux, T., … Hachimi-Idrissi, S. (2018). Evaluation of the Roche® Elecsys and the Diasorin® Liaison S100 kits in the management of mild head injury in the emergency room. Clinical Biochemistry, 52(November 2017), 123–130. https://doi.org/10.1016/j.clinbiochem.2017.11.004

Kraus, N., Thompson, E. C., Krizman, J., Cook, K., White-Schwoch, T., & LaBella, C. R. (2016). Auditory biological marker of concussion in children. Scientific Reports, 6(August), 1–10. https://doi.org/10.1038/srep39009

Little, C. E., Emery, C., Scott, S. H., Meeuwisse, W., Palacios-Derflingher, L., & Dukelow, S. P. (2016). Do children and adolescent ice hockey players with and without a history of concussion differ in robotic testing of sensory, motor and cognitive function? Journal of NeuroEngineering and Rehabilitation, 13(1), 1–19. https://doi.org/10.1186/s12984-016-0195-9

Lugones, M., Parkin, G., Bjelosevic, S., Takagi, M., Clarke, C., Anderson, V., & Ignjatovic, V. (2018). Blood biomarkers in paediatric mild traumatic brain injury: a systematic review. Neuroscience and Biobehavioral Reviews, 87(January), 206–217. https://doi.org/10.1016/j.neubiorev.2018.02.006

Manzano, S., Holzinger, I. B., Kellenberger, C. J., Lacroix, L., Klima-Lange, D., Hersberger, M., … Staubli, G. (2016). Diagnostic performance of S100B protein serum measurement in detecting intracranial injury in children with mild head trauma. Emergency Medicine Journal, 33(1), 42–46. https://doi.org/10.1136/emermed-2014-204513

Meier, T. B., Nelson, L. D., Huber, D. L., Bazarian, J. J., Hayes, R. L., & McCrea, M. A. (2017). Prospective Assessment of Acute Blood Markers of Brain Injury in Sport-Related Concussion. Journal of Neurotrauma, 1, neu.2017.5046. https://doi.org/10.1089/neu.2017.5046

Munia, T. T. K., Haider, A., Schneider, C., Romanick, M., & Fazel-Rezai, R. (2017). A Novel EEG Based Spectral Analysis of Persistent Brain Function Alteration in Athletes with Concussion History. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-17414-x

Oris, C., Pereira, B., Durif, J., Simon-Pimmel, J., Castellani, C., Manzano, S., … Bouvier, D. (2018). The biomarker s100b and mild traumatic brain injury: A meta-analysis. Pediatrics, 141(6). https://doi.org/10.1542/peds.2018-0037

Papa, L., Mittal, M. K., Ramirez, J., Ramia, M., Kirby, S., Silvestri, S., … Zonfrillo, M. R. (2016). In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography. Journal of Neurotrauma, 33(1), 58–64. https://doi.org/10.1089/neu.2015.3869

Papa, L., Mittal, M. K., Ramirez, J., Silvestri, S., Giordano, P., Braga, C. F., … Zonfrillo, M. R. (2017). Neuronal Biomarker Ubiquitin C-Terminal Hydrolase Detects Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Traumatic Brain Injury. Journal of Neurotrauma, 34(13), 2132–2140. https://doi.org/10.1089/neu.2016.4806

Papa, L., Zonfrillo, M. R., Welch, R. D., Lewis, L. M., Braga, C. F., Tan, C. N., … Mittal, M. K. (2019). Evaluating glial and neuronal blood biomarkers GFAP and UCH-L1 as gradients of brain injury in concussive, subconcussive and non-concussive trauma: a prospective cohort study. BMJ Paediatrics Open, 3(1), e000473. https://doi.org/10.1136/bmjpo-2019-000473

Parkin, G. M., Clarke, C., Takagi, M., Hearps, S., Babl, F. E., Davis, G. A., … Ignjatovic, V. (2019). Plasma Tumor Necrosis Factor Alpha Is a Predictor of Persisting Symptoms Post-Concussion in Children. Journal of Neurotrauma, 36(11), 1768–1775. https://doi.org/10.1089/neu.2018.6042

Reches, A., Kutcher, J., Elbin, R. J., Or-Ly, H., Sadeh, B., Greer, J., … Kontos, A. P. (2017). Preliminary investigation of Brain Network Activation (BNA) and its clinical utility in sport-related concussion. Brain Injury, 31(2), 237–246. https://doi.org/10.1080/02699052.2016.1231343

Rhine, T., Babcock, L., Zhang, N., Leach, J., & Wade, S. L. (2016). Are UCH-L1 and GFAP promising biomarkers for children with mild traumatic brain injury? Brain Injury, 30(10), 1231–1238. https://doi.org/10.1080/02699052.2016.1178396

Studer, M., Goeggel Simonetti, B., Heinks, T., Steinlin, M., Leichtle, A., Berger, S., & Joeris, A. (2015). Acute S100B in serum is associated with cognitive symptoms and memory performance 4 months after paediatric mild traumatic brain injury. Brain Injury, 29(13–14), 1667–1673. https://doi.org/10.3109/02699052.2015.1075250

Tylicka, M., Matuszczak, E., Dȩbek, W., Hermanowicz, A., & Ostrowska, H. (2014). Circulating proteasome activity following mild head injury in children. Child’s Nervous System, 30(7), 1191–1196. https://doi.org/10.1007/s00381-014-2409-4

 

Dernière mise à jour : 16 novembre 2019